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We study colloidal suspensions in a linearly sheared solvent using standard stochastic field equations,
namely, a modified Navier-Stokes equation for the solvent’s velocity, coupled with the continuity equation for
the suspensions’ number density. Unlike earlier approaches, active mixing is included, leading to distortions in
the structure factor for wave vectors perpendicular to the flow direction. Depending on the nature of the
colloidal interactions, the density of the suspension, and the magnitude of the shear, spatial correlations can be
either enhanced or reduced. Moreover, in strongly interacting systems, a spinodal line can be found, above
which the system is unstable to the formation of layers perpendicular to the shear gradient. We discuss how our
theory may be used to understand shear thinning or shear thickening, and the transition to lamellar phases seen
in simulations.@S1063-651X~96!03207-2#

PACS number~s!: 82.70.2y, 64.60.My

I. INTRODUCTION

Colloidal dispersions contain charged or neutral particles
that are suspended in a solvent which may also contain ex-
cess counterions. Typically, the energy of interaction be-
tween the colloidal particles is of the same order of magni-
tude as ions in a metal, while their size is of the order of a
micrometer@1#. Hence the interaction energy density is tre-
mendously reduced in comparison to the usual molecular
systems, and consequently, colloidal systems are very soft.
Colloidal suspensions exhibit gaseous, liquid, crystalline,
and glassy phases@2–5#, and this makes them attractive
model systems for a wide range of studies, phase transitions
and shear-induced melting being two standard examples.
Since the size and/or average separation of the particles is on
the same scale as the wavelength of light, their structure may
be probed either using light scattering at low concentrations,
or small-angle neutron scattering~SANS! at larger packing
fractions.

Because of their unusual softness, the nonequilibrium be-
havior of colloidal suspensions is of particular interest. Fol-
lowing the experimental work of Clark and Ackerson@6#,
sheared colloidal suspensions have been widely studied
@2,7–11#. Most studies of nonequilibrium phenomena focus
on the response of either crystalline-phase or liquid-phase
colloidal suspensions to an applied shear stress. In the former
case, the primary interest lies with the shear melting transi-
tion, where a solid colloidal suspension is sheared until it
becomes disordered and liquidlike. In some simulations@12#,
a reentrant solid phase is found as the shear rate is increased
past the melting transition, and furthermore, in stronger sol-
ids ~obtained by increasing the packing fraction and/or re-
ducing the counterion concentration! a solid-solid transition
was observed with no melting occurring. Finally, we note
that while discontinuities in viscometric functions have been
observed, reentrant crystallization has not been observed in
real systems. Instead, long-wavelength patterns~e.g., stripes!
can form @13# and these have been explained using a con-
tinuum viscoelastic hydrodynamic model in Ref.@14#.

The second case involves shearing a system in the liquid
state; this leads to a wide variety of behaviors in terms of the

structure factor or the suspension’s viscosity as a function of
the shear rate@15# ~and references therein!. The effective
viscosity of the suspension can exhibit three possible behav-
iors, namely, the viscosity may be independent of the shear,
or it may increase or decrease as the applied shear strength
increases. Respectively, these correspond to Newtonian be-
havior, to shear thinning, and to shear thickening. Shear thin-
ning seems to be the initial reaction of most systems under
shear, and can be explained in terms of the loss of order seen
in the structure factor, cf. Ref.@16#. As the shear rate is
increased further, shear thickening may or may not be seen
depending on the physical parameters of the sheared system
and on the maximum attainable shear rate. Reference@12#
also suggests that for suspensions which are in a solid state at
equilibrium, once shear melting has occurred, one recovers
the same types of behaviors found in an initially liquid sus-
pension.

In this paper we use a statistical field theory model to
study the effect of a linear shear gradient on hard-sphere
colloidal dispersions at different concentrations. We focus on
the structure factor for wave numbers in the shear gradient
direction since, as will be seen later, this is probably the key
aspect in understanding the rich phenomena mentioned
above. This work was motivated by experiments and numeri-
cal simulations~ @17,18#, and others! in which distortions of
the structure factor are seen in the plane perpendicular to the
flow direction of the solvent, and more specifically, in the
direction of the shear gradient. No theory of colloidal sus-
pensions in a solvent predicts such an effect, though an ap-
proach ignoring the solvent and based on the Smoluchowski
equation@11# ~with boundary conditions defined on the sus-
pended particles’ closest approach surface!, led to an effect
in the plane perpendicular to the shear flow direction. Their
results, however, are drastically different from those pre-
sented here and the conclusion which may be drawn from
their study relative to the behavior of the system under shear
is actually opposite to ours.

In the next section, the model is presented both in the
form of Langevin equations and in the Martin-Siggia-Rose
~MSR! formalism @19#, and the two-point correlation func-
tion is given to one-loop order. The calculation is done for a
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general equilibrium structure factorS(eq) and the general
form of the results is given. The high- and low-shear do-
mains are clearly identified in terms of the self-diffusion of
the colloid particles and the characteristic length of the equi-
librium structure factor, and may thus be easily compared
with experiment. Simple expressions for the small-shear
limit as well as for the asymptotic high-shear behavior are
found. In Sec. III calculations are performed for a system of
hard spheres in the Percus-Yevick approximation. We con-
clude in Sec. IV, and details of calculations are given in the
Appendix.

II. THEORY

The model presented in this section involves a stochastic
field theory description, of ana priori coarse grained system,
and is an extension of Ronis’s linear fluctuating diffusion
equation@7#. The number densityN(x,t), which is a continu-
ous variable, represents the number of particles per unit vol-
ume, where naively, the unit volume should be large with
respect to the interparticle separations. However, the success
of these types of theories in describing nonequilibrium struc-
tural changes in solids~see, e.g., Ref.@20#! has shown that
often, the above coarse graining requirements are too strin-
gent, and that the so-called phase field models may be ex-
tended down to lengths of the order of the interface width,
that is, to the order of the interatomic spacing. Consequently,
the standard assumptions will be made that the fields are
smoothly varying functions of time and space and are every-
where well behaved, implying of course that any boundary
effects are neglected. The other field relevant to our problem
is the local velocity of the fluid,v(x,t).

The equations of motion governing the evolution of these
fields are

]N~x,t !

]t
5D0¹

2m~x,t !2v~x,t !•¹N~x,t !1z~x,t !, ~1!

]v~x,t !

]t
5n¹2v~x,t !2v~x,t !•¹v~x,t !2

¹p~x,t !

r

1
kBT

rnc
¹N~x,t !m~x,t !1f~x,t !, ~2!

where m(x,t)5*@dk/(2p)d#e2 ik•xN(k,t)/S(eq)(k), and
with the Gaussian noise, whose moments are

^z~x,t !&50,

^z~x,t !z~x8,t8!&52D0nc~2¹2!d~x2x8!d~ t2t8!, ~3!

^f~x,t !&50,

and

^ f i~x,t ! f j~x8,t8!&52kBT~n/r!@2¹2d i j2¹i¹j~
1
31g!#

3d~x2x8!d~ t2t8!, ~4!

and wherenc is the number density of colloid particles,r is
the fluid density,D0 is the diffusion constant of the suspen-
sions in the solvent,n is the kinematic viscosity,p is the
local pressure, andg is the ratio of the bulk viscosity to the
shear viscosity. The definition ofm(x,t) follows from de
Gennes’s expression for a generalized diffusion operator

@21#, as in Ref.@7#. The above equations are simply the con-
tinuity equation@Eq. ~1!#, which ensures conservation of the
total number of colloidal particles, and the Navier-Stokes
equation as modified by the inclusion of active mixing@Eq.
~2!#, which describes the kinetics of a viscous fluid, here the
solvent. In addition, the solvent is assumed to be incompress-
ible and the colloidal particles neutrally buoyant; hence
r5const, which implies, using the continuity equation, a
divergenceless velocity field, and thus Eqs.~1! and ~2! are
complemented by the following relations:

r5const, ¹•v~x,t !50. ~5!

This transversality condition implies longitudinal terms such
as the pressure gradient term in Eq.~2! and the term in
¹i¹j in the velocity noise correlation Eq.~4!, which includes
the bulk viscosity drop out. The relaxation of this condition
implies the existence of sound waves, a situation which was
studied in simple liquids by Machtaet al. @22#, who looked
at the deformation of the Brillouin peaks caused by shear.

This system of equations has been used previously to
study systems near a phase transition such as pure fluids near
the liquid-gas transition and binary mixtures near the critical
concentration@23–26#. Since we are not studying a phase
transition but rather nonequilibrium effects within a liquid
phase, some phenomenological differences arise. First, the
entire equilibrium structure factor is used as opposed to that
obtained from a square-gradient expansion of the free energy
in the relevant order parameter near the transition. Further-
more, the assumption about the equilibrium particle distribu-
tion, translating into the simple relation betweenD̂(k) and
the equilibrium structure factor specified above, due to de
Gennes@21#, was later shown to be a good approximation for
colloidal suspensions@4#. Thirdly, the convective term is
usually neglected since by naive power counting, it has an
upper critical dimension of 2, and is thus irrelevant for
d.2. In the case at hand, however, these arguments do not
apply since we are not in the critical region@in fact, one
might wonder how the convective term can disappear in any
dimension since it ensures Galilean invariance of the equa-
tion; a proper renormalization group~RG! treatment using,
for example, the Callan-Symanzik equation to obtain the
scaling functions, shows thata priori, the coefficient of the
convective term is not affected by a scale transformation, and
thus remains present whend.2#. Nevertheless, it will be
seen later that for realistic shear strengths, the convective
term appearing in the Navier-Stokes equation is negligible.

Note that the Navier-Stokes equation for an incompress-
ible fluid when no external forces are involved relaxes to a
simple Gaussian equilibrium distribution. This essentially
follows from the particular structure of the reversible term
~the convective term!, leaving a simple linear term as the
irreversible part of the thermodynamic force, from which a
fluctuation-dissipation theorem follows@27,28#. In the same
way, the additional term involving the number density
N(x,t), which appears in Eq.~2! ~sometimes referred to as
the active-mixing term!, enforces detailed balance and hence,
in the absence of external perturbations, allows the system to
reach thermodynamic equilibrium. Note that the active-
mixing term is responsible for hydrodynamic interactions;
i.e., fluctuations inN at one point in the system lead to fluc-
tuations in the velocity, which in turn affect density fluctua-
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tions at other points. In the limit of vanishing Prandtl num-
ber, the active-mixing couplings all involve the usual Oseen
tensor. Finally, note that our theory does not explicitly in-
clude the effects associated with the hydrodynamic boundary
conditions at the colloidal particles’ surfaces, except through
the form of the diffusion constant.

The stochastic equations~1! and ~2! together with the

constraint, Eq.~5!, may be cast in functional form from
which the generating functional of cumulants and of vertex
functions may be defined. This representation of fluctuating
field equations, known as the MSR formalism@19#, has the
practical purpose of defining vertex functions which can be
calculated in perturbation theory using Feynman diagrams.
We first define the functional:

H@N,Ñ,v,ṽ#5E dkdv

~2p!d11 FkBT~n/r!k2ṽ~k,v!•FI k• ṽ~2k,2v!2~2 iv1nk2!ṽ~k,v!•v~2k,2v!

2
i

2E dk8dv8

~2p!d11 ṽ
a~2k,2v!Vk

a;bgvb~k8,v8!vg~k2k8,v2v8!

1
i

2E dk8dv8

~2p!d11 ṽ
a~2k,2v!Ua~k,k8!N~k8,v8!N~k2k8,v2v8!1D0nck

2Ñ~k,v!Ñ~2k,2v!

2Ñ~k,v!S 2 iv1
D0k

2

S~eq!~k! DN~2k,2v!2 i E dk8dv8

~2p!d11 Ñ~k,v!kava~k8,v8!N~k2k8,v2v8!G , ~6!

where (FI k)
ab[dab2kakb/k2, Vk

a;bg[kb(FI k)
ag1kg(FI k)

ab, Ua(k,k8)[kBT/(rnc)(FI k)
abk8b@1/S(eq)(k2k8)

21/S(eq)(k8)], dab is the Kronecker delta, the Greek superscripts denote Cartesian coordinates, and a sum over repeated
indices is henceforth implied. The above functional may be used to construct the partition function as

Z@h,h̃,j , j̃ #5E $DN%$DiÑ%$Dv%$Di ṽ%exp~2H@N,Ñ,v,ṽ# !expF E dkdv

~2p!d11 @h~k,v!N~2k,2v!

1h̃~k,v!Ñ~2k,2v!#GexpF E dkdv

~2p!d11 @ j ~k,v!•v~2k,2v!1 j̃ ~k,v!• ṽ~2k,2v!#G . ~7!

Using the partition function, we can define the free energy functional in the usual way:F@h,h̃,j , j̃ #52 lnZ@h,h̃,j , j̃ #. The latter
functional generates all connected graphs, or cumulants. Finally, through a Legendre transformation, we obtain the vertex
functional:

G@^N&,^Ñ&,^ j &,^ j̃ &#5F@h,h̃,j , j̃ #1E dkdv

~2p!d11 @h~k,v!^N~2k,2v!&1h̃~k,v!^Ñ~2k,2v!&#

1E dkdv

~2p!d11 @ j ~k,v!•^v~2k,2v!&1 j̃ ~k,v!•^ṽ~2k,2v!&#, ~8!

with

^N~k,v!&5
2dF@h,h̃,j , j̃ #
dh~2k,2v!

uh5 h̃50;j , j̃ 50 ,

^Ñ~k,v!&5
2dF@h,h̃,j , j̃ #

dh̃~2k,2v!
uh5 h̃50;j , j̃ 50 , ~9!

and,

^v~k,v!&5
2dF@h,h̃,j , j̃ #
d j ~2k,2v!

uh5 h̃50;j , j̃ 50 ,

^ṽ~k,v!&5
2dF@h,h̃,j , j̃ #

d j̃ ~2k,2v!
uh5 h̃50;j , j̃ 50 . ~10!

The functionalG generates vertex functions which can be
obtained diagrammatically by keeping only one-particle-
irreducible~1PI! graphs and amputating the external legs.

The evaluation of the two-point correlation function
^N(k,V)N(k8,V8)&, performed in this work up to one-loop
order, may be represented diagrammatically as

~11!

where the elements used in constructing Feynman diagrams
are easily determined. For example, in expansions about
equilibrium, the result is
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~12!

~13!

~14!

~15!

~16!

~17!

~18!

Note that Eq.~11! can be obtained in alternate ways; we
have adopted the MSR method since it can be used as a

common starting point for a theory of the dynamic structure
factor @which Eq.~11! formally is#, for a self-consistent ver-
sion of the theory, or for an analysis of a linear relaxation
experiment. Some of these points are already under consid-
eration, and will be reported later.

This study focuses on such a system being driven away
from equilibrium by the application of linear shear, i.e.,

v~x,t !5v0~x!1dv~x,t !, with v0~x!5v0ŷx. ~19!

In all that follows,v0>0 is assumed, with no loss of gener-
ality. The shear breaks detailed balance and brings the sys-
tem to a steady state out of equilibrium. Thus the fluctuation-
dissipation relation no longer holds and the system will not
decay back to its original thermodynamic equilibrium as
long as the external force~shear! persists. The applied shear
also modifies the bare propagators that appear in Eq.~11!,
i.e., it modifies Eqs.~12!–~15!. They become nondiagonal in
the shear gradient direction of Fourier space, and hence be-
come integral operators as opposed to simple factors. For
example, the bare number density response function be-
comes

~20!

while the correlation function takes the form

~21!
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where k'[(0,ky ,kz). This constitutes a nontrivial change
which greatly increases the complexity of the calculation.
The leading order correlation function, cf. Eq.~21!, is
equivalent to the result of Ronis@7#.

Previous studies of sheared colloid suspensions dealing
with the liquid phase either ignored the effect of the solvent
@18,11#, or dealt with convection only to zero-loop order@7#.
As a consequence, these methods were unsuccessful at pro-
ducing an effect in the gradient direction~herex̂). As can be
seen from the modified response and correlation functions,
Eqs. ~20! and ~21!, respectively, the shear strengthv0
couples to the component of the wave number in the flow
direction, ky ; hence, in the plane perpendicular toŷ, the
hydrodynamic model implies that only mode-coupling terms
could lead to shear effects, and these first appear in the one-
loop terms of Eq.~11!.

As was shown in Ref.@7#, the zero-loop expressions, Eqs.
~20! and~21!, predict a loss of order as the shear is increased,
eventually resulting in an ideal gas structure factor, i.e.,
S(eq)(k).1, as long askyÞ0. Whenky50 the leading order
analysis predicts no change in the structure factor. The rea-
son for this behavior lies in the form of the response func-
tion, cf. Eq. ~20!; it is unchanged forky50 but whenky
Þ0 it becomes a rapidly decreasing function ofk,k8. At
higher order, even though the loop terms in Eq.~11! include
contributions from internal wave vectors that are orthogonal

to y, the external propagators~lines! will cause the result to
be negligibly small for large shears unlessky50, and hence
we focus our attention on wave vectors in the gradient direc-
tion. Moreover, note that the zero-loop analysis describes the
distortion of the structure factor reasonably well away from
the gradient axis, i.e., forkyÞ0.

Thus we focus on evaluating the nonlinear correction
along the gradient direction and proceed to evaluate, to first
order in perturbation theory, the two-point correlation func-
tion for the colloid number density, settingky andkz to zero.
This will be done for a general equilibrium structure factor
S(eq)(k).

The quantity of interest is the equal-time two-point corre-
lation function. It is related to the dynamical two-point cor-
relation function and to the nonequilibrium structure factor
in the following way:

^N~k!N~k8!&5E dV

2p E dV8

2p
^N~k,V!N~k8,V8!&

[~2p!dd~k1k8!ncS~k!. ~22!

To one-loop order, cf. Eq.~11!, the equal-time structure fac-
tor along the special directionx̂ becomes

S~ t !5S~eq!~ t !$11S~eq!~ t !nc@ f ~ t !1 f ~2t !#%, ~23!

where the nonequilibrium correctionncf (t) has the form

ncf ~ t !5
3

4p2 S as D E dx
x'
2

@x'
21~x1t !2#2

E
0

1`

dp
]

]p S S~eq!~Ax'
21~p1x!2!

S~eq!~ uxu! D expF2
1

ayE0
p

dr
@x'

21~r1x!2#

S~eq!~Ax'
21~r1x!2!

G ,
~24!

with x'[(0,y,z), and with the integration domain along the
y direction restricted toy>0. The quantityncf (t) is a func-
tion of the scaled wave numbert[kxs @wheres.2p/kmax
is the characteristic length scale defined by the maximum of
S(eq)(k), which for hard spheres corresponds to the particles’
diameter#, the dimensionless quantitya[v0s

2/(2D0),
which is analogous to the Pe´clet number and is sometimes
called the Deborah number@29#, and the packing fraction,
h[(4p/3)nca

3, a being the radius of the particles. Note
that the latter expression does not have an explicit depen-
dence on the kinematic viscosityn, but only an implicit one
throughD0 , if one accepts the Stokes-Einstein relation. Fur-
ther details on the derivation off (t) are given in the Appen-
dix.

The equilibrium structure factor is related to the direct
correlation function through the Ornstein-Zernike relation,

S~eq!~ t !5
1

12ncc̃~ t !
, ~25!

wherec̃(t) is the Fourier transform of the equilibrium direct
correlation functionc(x). If the Ornstein-Zernike form is
assumed for the nonequilibrium structure factor, cf. Eq.~25!,
then the first-order correction to a nonequilibrium direct cor-

relation function is easily found from Eqs.~23! and~25! and
leads to the following resummed expression forS:

1/S~ t !512nc@ c̃~ t !1 f ~ t !1 f ~2t !#. ~26!

This formulation will be particularly useful later when con-
structing an approximate stability phase diagram. The insta-
bility in question is then simply defined as the
1/S(t* )ua5acr

50, which corresponds to a spinodal line,

wheret*5kx*s is the position of the diverging peak in the
structure factor.

It is of interest to investigate the nonequilibrium structure
factor in the limit of small shear (a,1), as well as its as-
ymptotic infinite-shear behavior (a→`), as simplified ex-
pressions for the nonlinear correctionf (t) may be obtained.
For small Deborah numbers and att50, the full expression
for f (0), cf. Eq.~24!, reduces to

lim
a→0

ncf ~0!5
3

4p2 S as Da3/2
@]2ncc̃~ t !/]t2#u t50

@12ncc̃~0!#5/2
C, ~27!

whereC is a constant given by Eq.~A6! in the Appendix.
Hence it is natural to suppose that quantities which mainly
depend on the long wavelength behavior of the system are
expected to vary asa3/2 for smalla.

At finite t, the nonequilibrium correction to the direct
correlation function is
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ncf ~ t !5ncf ~2t !5
3

64S 2as D S a

t D
2E

0

`dr

r

ncc̃8~r !

@12ncc̃~r !#3
F ~x221!

x
lnU 11x

12x US 3x41 5

4
x21

5

4
1

7

4x2
1

3

4x4D
26x41

3

2
x22

1

30
1

5

2x2
1

3

2x4G , ~28!

wherex[r /t. In addition to the requirement of small-shear-rate (a,1), the validity of the finite-t expression is restricted to
the regime wherea

1/2
,t, and hence the notion of a boundary layer arises. Equation~28! will be compared with the numerical

integration of the full expression for hard spheres, confirming the existence of a boundary layer as defined above.
Nonanalyticities were seen in simulations of fluids with various types of interaction@30–33#, where the typical behavior

was an increase in pressure asv0
3/2 for small to intermediate shear rates, and a decrease of the viscosity asv0

1/2 for intermediate
shear rates. Theoretically, nonanalytical behavior was also found@34–36,16,9#, together with an expansion parameter analo-
gous toa/t2 for quantities such as the structure factor which implies the same boundary layer definition as above. Note that
the relation between the structure and the viscosity is nontrivial, and has contributions from both high and low wave numbers;
hence, just which wave number regime, if any, makes the dominant contribution is responsible for the variety of different
behaviors seen in simulations and experiment@16#.

Simple expressions are also found for the infinite-shear correction to the direct correlation function:

ncf `~ t !1ncf `~2t !52
3

4p S as D E
0

`

dx
x2

t2
ncc̃~x!S x21t2

xt
lnU x1t

x2t U22D , ~29!

wherex5qs is the scaled internal momentum, andt is defined above. The same quantity may be expressed in terms of the real
space correlation functionc(s), wheres[r /s is a scaled real space variable, giving

ncf `~ t !1ncf `~2t !526pS as Ds3E
0

`

ds
ncc~s!

st2 S sin~st!st
@~st!221#1cos~st! D . ~30!

The notion of infinite-a limit may appear purely aca-
demic, since experimentally, the maximum shear rates attain-
able is of the order of 103–104 s21, which for neutral par-
ticles of radiusa51025 cm in water at room temperature
gives amax.10–100 as the largest Deborah number which
can be achieved. However, substituting glycerine for water
and increasing the size of the particles twofold boosts the
Deborah number dramatically, toamax.104–105, which
may now be considered thea@1 regime, if not the infinite-
a limit. Hence, in practice, the limit of infinite shear may be
approached by increasing the Deborah numbera@1, while
keeping the Prandtl number at a very small value,Pt!1, and
v0 small enough to avoid any effect on the solvent such as
turbulence, i.e.,v0l

2/n!Rcr , wherel is the plate separation
in the shear gradient direction andRcr is the critical Reynolds
number.

III. RESULTS

The correction to the nonequilibrium structure factor,
f (t), presented in the preceding section has been evaluated
numerically for a system of hard spheres at both low and
high packing fraction. Again the reader is reminded that the
results reported below relate to the distortion of the equilib-
rium structure factor caused by the application of a shear
stress, and our attention is focused on the gradient shear
direction as we believe this is where the most interesting
effects arise.

The well-known Percus-Yevick expression for the real
space correlation function is

cPY~x![H 2l116hl2x2 1
2 hl1x

3, x<1

0, x.1
~31!

where

h[
4p

3
a3nc , l1[

~112h!2

~12h!4
, l2[

~11h/2!2

~12h!4
,

~32!

with x[r /s, wherer is the length of the Cartesian vector
r and, as mentioned earlier,s is the scale of the structure
factor, which for hard spheres corresponds to the diameter of
the particles, that iss52a, and henceforth, when dealing
with hard-sphere systems, the ratios/(2a) appearing in Eq.
~23! will be set to one. Besides being widely used to fit
experimental data, this type of model, because of its simplic-
ity, allows the analysis to be carried out farther in some
cases, thus reducing the need for numerical computation. For
example, in the limit of small shear,a,1, and at zero wave
number, a closed expression emerges for the correction to the
structure factor,f (0), which shows a simple dependence on
the shear rate. Namely, for hard spheres, Eq.~27! reduces to

lim
a→0

ncf ~0!5
3C

p2 a3/2
h~l1/52hl21hl1/16!

@11h~8l1236hl212hl1!#
5/2,

~33!
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whereC is given by Eq.~A6!. Comparison of the small-
shear approximation Eq.~33! with the full expression Eq.
~24! is shown in Fig. 1 wheref (0) is plotted versusa3/2 at
infinite dilution; excellent agreement is seen fora<1.

At nonzero values of wave vector (tÞ0), the small-shear
expression Eq.~28! is shown in Table I to be reasonably
accurate fora1/2<t. Consequently, at least for hard-sphere
systems in the limit of small-shear rates, there seems to be a

boundary layer aroundt.a1/2, outside which the correction
to the direct correlation function,nc@ f (t)1 f (2t)#, has an
a2 dependence. Note that there are similar boundary layers
in the asymptotic expansions of the zero-loop results forky
Þ0 @7,16,9#.

A simple expression is also obtained in the limit of an
infinite-shear rate. SubstitutingcPY(s) given by Eq.~31!, in
Eq. ~30! for the asymptotic infinite-shear nonequilibrium
correction, yields the following closed expression:

ncf `
PY~ t !1ncf `

PY~2t !518hl1

1

t2 Fsin~ t !t
2cos~ t !G1108h2l2

1

t2 F1t S p

2
1si~ t ! D1cos~ t !22

sin~ t !

t G
19h2l1

1

t4 F4tsin~ t !2t2cos~ t !19S cos~ t !2
sin~ t !

t D G , ~34!

where

si~ t ![2E
t

`

@sin~x!/x#dx, ~35!

andh, l1 , andl2 are defined in Eq.~32!.
We first examine a system of hard spheres at infinite di-

lution, and consider limh→0@S(t)21#/h, which, from Eq.
~26!, is just (6/ps3)@ c̃(t)1 f (t)1 f (2t)#. The latter quan-
tity is shown in Fig. 2 for different orders of magnitude in
shear together with the corresponding equilibrium quantity,
i.e., the direct correlation function at zero packing fraction.
The main trends to note are the flattening of the nonequilib-
rium correlation function and the slight shift of the main
peak to larger wave numbers at small-shear rate, and then to
smaller wave numbers at higher-shear rate. The inset depicts
the quantity (6/ps3)@ f (t)1 f (2t)# for the same shear rates

as the main figure, as well as the direct correlation function.
It is clearly seen that short-range order in the gradient direc-
tion monotonically decreases as shear increases, at infinite
dilution. This is contrary to the theoretical results of
Blawzdziewicz and Szamel, cf. Fig. 2 of Ref.@11#, who pre-
dict that shear will enhance short-range order at infinite di-
lution, the exact opposite of our conclusion.

Of course, our theory is not restricted to infinite dilution
and Figs. 3 and 4 show the nonequilibrium structure factor at
various shear rates and at a packing fraction of 10% and
50%, respectively. The insets depict the corresponding quan-
tity @S(t)2S(eq)(t)#/S(eq)(t), the deviation from equilibrium,
for the different shear rates. Again, note the flattening of the
structure factor with increasing shear, as well as the peak
position which initially moves right and then left, as the
shear rate is further increased; both these effects have been
observed in the experiment of Ackersonet al.when looking
at the structure factor in the gradient direction@17#. Hence, at
low packing fraction, the effect of increasing shear is to de-
crease the correlations between the colloidal particles~a be-
havior also seen in the flow direction, i.e., forkyÞ0 @7#!,
e.g., as if the packing fraction were reduced.

The monotonic rise of the structure factor at long wave-
lengths (t!1) as a function of the Deborah numbera per-
sists as the concentration increases. For the case at hand, i.e.,
the Percus-Yevick approximation for a hard-sphere system,
at some point it will even cross one@S(0)ua5`51# at a
packing fraction of 55.8%, and will eventually become un-

FIG. 1. Comparison of the small-shear approximation expres-
sion atkxs50, which has ana3/2 behavior, cf. Eq.~27!, and the
exact numerical result, for a system at infinite dilution. The same
quantity is shown on a log-log scale in the inset. Good agreement is
seen fora,1.

TABLE I. Comparison between direct numerical integration of
Eq. ~24! with the small-shear finite-t expression Eq.~28!. Good
agreement is seen fort>a1/2.

h a t Exact result Approximation %D

0.1 1.0 6.0 29.4027731025 29.4297131025 0.3
0.1 1.0 1.0 1.8119831023 1.7257331023 24.8
0.1 1.0 0.1 4.6865531023 1.6243031022 246
0.1 0.1 6.0 29.3051831027 29.4297131027 1.3
0.1 0.1 0.316 5.6405831025 5.3471631025 25.2
0.1 0.1 0.03 1.4385831024 5.3284631024 270

582 54B. MORIN AND D. RONIS



stable@1/S(0)ua5`50# when h reaches 57.3%. Hence, at
very large values of the shear rate and of the concentration,
large, long-wavelength fluctuations develop, a situation
which is reminiscent of systems near a second-order phase
transition. However, as we now show, an instability near the
principal peak of the structure factor occurs at smaller pack-
ing fraction~or equivalently, for weaker interactions!, which
renders the long-wavelength instability irrelevant.

At larger packing fractions, the amplitude of the main
peak of the structure factor will first decrease asa is in-
creased, reach a minimum, and thereafter increase. We illus-
trate this in Fig. 5, which shows the difference
@S(t* )ua5`2S(eq)(t* )# between the nonequilibrium struc-
ture factor at infinite shear and the equilibrium structure fac-
tor as a function of the packing fractionh ~each structure
factor being evaluated at its maximum peak positiont* ). At
small concentrations, the latter quantity is negative, which
implies the peak has decreased as the shear rate was in-
creased from zero to infinity, while at larger concentrations it
becomes positive, implying the existence of more short-
range order at infinite shear than at equilibrium.

Hence, while for large length scales, fluctuations increase
monotonically, the situation is different in the first peak re-
gion. Initially, when the concentration is very small, the ef-
fect of shear is the same as for large wavelengths, i.e., less
order. However, as the number of particles per unit volume
increases, a weak order develops in the gradient direction as
to avoid the active-mixing hydrodynamic interactions cre-

FIG. 2. The zero density limit of the correlation function for
hard spheres. The various curves correspond to equilibrium~zero
shear, solid line!, a50.91~short-dashed line!, a59.1 ~dashed line!,
and infinite shear~long-dashed line!. Flattening of the curve with
increasing shear is clearly seen, as is a slight shift of the main peak
to the right at small shear and a shift to the left at infinite shear. The
inset depicts the direct correlation function and the nonequilibrium
corrections separately.

FIG. 3. Nonequilibrium structure factor, also in the shear gradi-
ent direction but for a packing fraction of 10%, fora50 ~solid
line!, a510 ~short-dashed line!, a5500 ~dashed line!, and infinite
shear~long-dashed line!. As before, the main peak initially moves
to higher wave numbers, then turns back and moves to lower values
of kxs at larger shear rates, while at long wavelengths, the structure
factor increases monotonically. The main peak, however, at first
decreases with increasing shear but later starts increasing again for
large values ofa, while the secondary peaks continue to flatten.
The quantity shown in the inset represents the nonequilibrium cor-
rections times the nonequilibrium structure factors
@ f (kxs)1 f (2kxs)#S(kxs), for the shear rates cited above.

FIG. 4. The same quantities as in Fig. 3, but for a packing
fraction of 50%, and again fora50 ~solid line!, a510 ~short-
dashed line!, anda5500~dashed line!. At infinite shear, the system
is unstable, and hence the omission of thea5` curve. As in the
previous two figures, the main peak first moves right and then left,
and at small wave numbers, the structure factor moves up continu-
ously. The main peak first decreases, but then moves up dramati-
cally, signaling that the system is close to the spinodal point, pre-
sumably representing an instability to the formation of lamella in
the shear gradient direction. The inset shows the nonequilibrium
correction to the direct correlation function multiplied by the non-
equilibrium structure factor for the parameters mentioned above.
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ated by the increasingly sheared solvent. Eventually, a criti-
cal value is reached, 1/S(t* )uhcr ;a5`50, characterized by a
diverging peak in the structure factor. Note that the latter
instability corresponds to a spinodal point, thus implying the
possibility of a fluctuation induced first-order transition be-
fore the point in question is reached. Moreover, in the
Percus-Yevick model, there is a critical packing fraction,
easily found numerically using Eq.~34!, below which no
instability occurs ~even at infinite shear!. Its value is
hcr50.375 319 51.

Since the viscosity of the whole system is proportional to
the integral of@S(k)21# times other factors@16#, the shear-
thinning and -thickening behaviors as well as discontinuous
jumps in viscosity are probably related to the initial flatten-
ing of the structure factor followed by the increase in the
peak up to the instability. Indeed, this suggests that the re-
gion of parameters where the first peak of the structure factor
goes from a decreasing to an increasing behavior, which may
be defined as]S(t* )/(]a)50 with t* the position of the
first peak, might correspond to the point where the system
reverses its shear-thinning behavior and starts shear thicken-
ing. For packing fractions higher than the critical value, the
correlations decrease@i.e., S(k)→1# for all k’s except for
those near the first peak inS(eq)(k). The correlations in this
range at some point start to increase, until eventually they
diverge at a large but finite value ofa, the Deborah number.

A phase diagram may be drawn forh.hcr , in theh-a
plane, together with a line delimiting the shear-thinning be-
havior from shear thickening. Such a diagram is shown in
Fig. 6. Below the spinodal line~full line!, the system may be
characterized as liquidlike, whereas above the transition line

the system is unstable against the formation of layers perpen-
dicular to the shear gradient direction. Since near the insta-
bility the structure factor develops a large peak, drastic
changes in quantities associated with it are expected, in par-
ticular in the average stress tensor^t i j & and thereby the vis-
cosity. The dotted line in the same figure shows where the
liquidlike system is expected to stop shear-thinning and start
shear thickening, as characterized by the behavior of the first
peak of the structure factor.

IV. CONCLUSION

The effect of linear shear on a system of colloidal suspen-
sions was studied using a stochastic field model describing
the evolution of the local particle number densityN(x,t) and
the local solvent velocityv(x,t)5v0xŷ1dv(x,t). The main
conclusions are as follows.

At small shear rates (a,1), the nonequilibrium correc-
tion to the correlation function at zero wave number in-
creases asa3/2, implying S(0) grows accordingly, and
hence, such a behavior should be observed in any experi-
mental quantity or numerical simulation probing the long-
wavelength character of the system. For finite values of wave
number, the concept of boundary layer emerges, defined by
kxs.a1/2. Whenkxs>a1/2, again for small-shear rates, the
nonequilibrium correction is well approximated by Eq.~28!,
which shows ana2 dependence.

As the shear is gradually increased to infinity, the struc-
ture factor is modified in different ways depending on the

FIG. 5. Shown here is the difference in height between the non-
equilibrium structure factor at infinite shear and the equilibrium
structure factor, both at long wavelengths~dashed line! and for the
main peak~solid line!. The main peak is lower ata5` for packing
fractions less than 26–27%, while for small wave numbers, it is
always higher. The inset depicts the motion of the main peak at
infinite shear, relative to its position at equilibrium, as a function of
packing fraction. As shown, the peak always moves to the left for
asymptotically high shear rates, and at large enough packing frac-
tions, by a sizable amount, up to 20–30%.

FIG. 6. Phase diagram showing the spinodal line~solid line!
representing an instability to the formation of lamella in the shear
gradient direction. Above this line, the system is unstable to the
formation of lamellae perpendicular to the velocity. The solid line
shows uh2hcru2z, wherez51.4 ~as determined by least squares
fitting to the data points!. Also shown is the line where
@]S(t* )/]a#50 (t* being the main peak position!, which may
roughly correspond to the transition between the shear thinning be-
havior and shear thickening for reasons explained in the text. The
points on these lines were obtained in the following manner: First,
a set of points were calculated numerically in thea-t plane for a
given value ofh. The resulting two dimensional grid was fitted to
various polynomials ina and t and the transition points were de-
termined numerically. The data points represent the average of the
results, with one standard deviation error bars.
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strength of interaction between the colloidal particles and on
the magnitude of the wave vector. The structure factor ap-
proaches unity for all wave vectors except those in the neigh-
borhood of the first peak withkyÞ0; here, the main peak
first decreases with increasing shear, but, if the interparticle
interactions are strong enough~e.g., by having the concen-
tration high enough!, it eventually reaches a minimum and
then grows. This represents increasing short-range order, and
eventually, an instability may be reached, characterized by a
diverging peak. This divergence in the main peak of the
structure factor usually indicates that some type of long-
range order has settled in. A phase diagram was thus ob-
tained in the Percus-Yevick approximation. The line in the
a-h plane divides a liquidlike region from a region where
lammella are thought to form in the plane perpendicular to
thex direction~the shear gradient direction!. A lower limit to
the packing fraction is thus found for a hard-sphere system,
below which no instability occurs even at infinite shear; i.e.,
no instabilities are possible for packing fractions less than
37.5%, in hard-sphere systems. Note that these last two ob-
servations do not preclude the existence of first-order transi-
tions that may occur on either side of theh5hcr line.

The aforementioned changes in the structure factor as a
function of Deborah number and packing fraction and its
relation to the viscosity~as proportional to the integral of
@S(k)21#), leads to a line delimiting shear-thinning and
shear-thickening behavior@here defined as]S(t* )/(]a)50
for simplicity#, and is indicated in the phase diagram.

At low particle concentrations, it is interesting to note that
the reduction in the amplitude of the main peak together with
a shift of the latter to lower wave numbers was seen experi-
mentally by Ackersonet al. @17# when looking at the struc-
ture factor in the gradient direction.

Finally, in charged systems, an instability may occur at
much smaller packing fraction than the lower critical pack-

ing fraction of 37.5% found for hard-sphere systems for the
obvious reason that charged particles in poorly screened sus-
pensions have strong electrostatic interactions, and hence
have an effective size which is significantly larger than their
physical size.

Hence the model of colloidal suspension presented in this
paper has succeeded in reproducing many results previously
seen in experiments or numerical simulations. In addition,
predictions were made in the form of a phase diagram,
among other things, which, at least in the case of hard
spheres, may easily be compared with experiments and nu-
merical simulations using the simple parametersa and h,
the Deborah number and the packing fraction, respectively.

We have compared the predictions of the theory with the
trends observed by Ackersonet al. @17#; the correspondence
with simulations is more difficult to establish since to date
none of them include a real solvent, thereby making the iden-
tification of the Deborah number problematic. Nonetheless,
what we predict is consistent with what is seen experimen-
tally. This may be somewhat fortuitous since the de Gennes
form for the diffusion constant will cease to be valid for very
concentrated suspensions and higher-order corrections in
perturbation theory will likely be important near the spinodal
lines.

APPENDIX

The expression corresponding to the nonequilibrium
structure factor up to one-loop corrections, cf. Eq.~11!, for
external wave numbers in the gradient direction is

S~kx!5S~eq!~kx!$11S~eq!~kx!@F~kx!1F~2kx!#%,
~A1!

where

F~kx!5
kBT
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whereq'[(0,qy ,qz), and the domain of integration ofqy is
restricted toqy>0. Note that the above expression is not
symmetric with respect to thekx origin, so one must add the
2kx contribution to the final result, as shown in Eq.~23!. In
the above expressions,n is the kinematic viscosity of the
solvent,D0 corresponds to the diffusion constant of the sus-
pensions and is defined by the Stokes-Einstein relation

D05kBT/(6panr), v0 is the shear strength,kx is the wave
number in the direction of the shear gradient, ands is the
scale of the structure factor and is typically defined such that
the main peak of the structure factor occurs nearks.2p. In
the case of hard spheres, for example,s is the diameter of
the colloid particles.

It is thus natural to define new variables asx5ks,
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p5pxs, p85px8s, l5 l xs, r5r xs, andt5kxs, from which
two decay scales appear inside the exponentials, namely,
b5v0s

2/(2n) ~which is similar to the internal Reynolds
numberv0a

2/n) for the solvent velocity propagator, and
a5v0s

2/(2D0) for the colloid number density propagator.
Typically, colloidal suspensions are characterized by small
Prandtl number,Pt5D0 /n!1, implying b!a and accord-
ingly exp@2gv( l ,p,q)/b#!exp@2gN(l,p,q)/a# ~these expo-
nential factors appear in the expression forF above and are
essentially the number density and velocity propagators of
the sheared system!, wheregv and gN are functions of the
same order of magnitude. This implies that the shear rates
relevant to the suspension are orders of magnitude smaller
than those relevant to the solvent. Thus the effect of shear on
velocity fluctuations is negligible and the usual linear propa-
gator may be used in place of the more tedious expression
used at finite shear. This corresponds to neglecting the expo-
nential factors of lines 2 and 4 of Eq.~A2!, and integrating
by parts overl x the exponential factor of line 1 and neglect-
ing the remaining integral.

The simplified expression resulting from neglecting terms
of orderPt

1/2 and higher~as described above! is

F~ t !. f ~ t !1O~Pt
1/2!1 . . . , ~A3!

where f (t) is given by Eq.~24!.
Even though neglecting terms ofO(Pt

1/2) allows for con-
siderable simplification, the expression remains intractable
analytically. Further progress may be achieved by perform-
ing an integration by parts inp, and f (t) becomes

f ~ t !5 f `~ t !1D f ~ t !, ~A4!

where f` is the infinite-shear correction given by either of
Eqs. ~29! or ~30!, and D f contains the remaining finite-a
dependence. Through a change of variables, specifically, set-
ting z5Ax'

22y2, the y integration may be carried out, giv-
ing

D f ~ t !5
3
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whereK0(x) is the modified Bessel function. Nonetheless,D f still has a complicated form, and its evaluation for arbitrary
parameters and structure factors must still be done numerically.

The small-shear expression, Eq.~27!, is obtained from Eq.~24! at t50 by scaling all the integration variables bya1/2 and
Taylor expanding quantities dependent ona arounda50. Equation~27! is thus obtained with the constantC given by

C5E
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1`

dxE
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dyE
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dz
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2

~x2!2E0
`

dp~p1x!expF2
p

y S x21xp1
p2

3 D G , ~A6!

with x'
25y21z2, andx25x21x'

2 . The result isC51.848 739 49.
Using the Percus-Yevick approximation for a hard-sphere system, an approximate analytical asymptotic form for

D f (t50) may be found in the limit of large shear. By addingf `(t50), which is easily obtained from Eq.~34!, to
D f (t50), it follows that the nonequilibrium correction to the direct equilibrium correlation function is

2ncf ~0!.6hS l124hl21
1

5
hl2D2

9hl1

4a S 7p2

6
12g228g14g ln~12a!28 ln~12a!12@ ln~12a!#2D1OS 1a D , ~A7!

whereg is Euler’s constant. Note that the logarithmic terms result from the slow oscillatory decay of the equilibrium structure
factor in the Percus-Yevick approximation, which aside from the value of the coefficient ofl1 is the same found in a dilute
hard-sphere gas; they would disappear for models that have more rapidly decaying structure factors.
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